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ABSTRACT 
This paper presents three sets of classification schemes for 
processes, properties, and transitions that can be used to assist in 
the analysis of real-time systems.  These classification schemes 
are discussed in the context of ASTRAL, which is a formal 
specification language for real-time systems.  Eight testbed 
systems were specified in ASTRAL, and their proofs were 
performed to determine proof patterns that occur most often.  The 
specifications were then examined in an attempt to derive specific 
characteristics that could be used to statically identify each pattern 
within a specification.  Once the classifications were obtained, 
they were then used to provide systematic guidance for analyzing 
real-time systems by directing the prover to the proof techniques 
most applicable to each proof pattern.  This paper presents the set 
of classification schemes that were developed and discusses how 
they can be used to assist the proof process. 

Keywords 
Formal methods, formal specification and verification, real-time 
systems, ASTRAL, system classification, analysis guidance, 
timing requirements. 

1. INTRODUCTION 
Real-time systems are distributed, concurrent, and reactive, which 
makes the proofs of their critical requirements extremely complex.  
These proofs are most often discharged based solely on the 
ingenuity of the human prover.  To make the analysis of real-time 
systems less ad hoc and less dependent on human ingenuity, it is 
desirable to provide a methodology that can be used to direct the 
proofs in a systematic fashion.  To develop such a methodology, it 
is necessary to define a set of classification schemes that can be 
used to differentiate between various specification and proof 

styles.  These classifications are used to separate specifications 
with different patterns as well as separating individual proofs into 
simpler pieces.  It is critical not only that different classifications 
result in different proof styles, but also that the classifications are 
statically recognizable so that they can be consulted before 
analysis begins.  When a user analyzes a real-time system, system 
entities can be classified appropriately and then the guidelines for 
each applicable classification can be consulted to direct the 
proofs.  These guidelines include which analysis step should be 
performed next, how it can be performed efficiently using the 
appropriate tools and techniques, and how the results of different 
approaches can be used to complement each other. 

In order to determine the classification schemes that are most 
useful during analysis, a set of testbed systems was developed.  
These systems consist of a variety of different process and 
property types.  Each system was specified in ASTRAL [2], which 
is a formal specification language for real-time systems.  The 
proofs of each system were performed to determine the proof 
patterns that occurred most often, which could then be reused in 
the proofs of other systems based on the classification schemes.  
The specifications that comprised the testbed varied from the 
specification of a distributed mutual exclusion protocol to a phone 
switching system to a production facility.  More specifically, the 
specifications include a number of standard benchmark systems:  
a bakery specification that describes the distributed mutual 
exclusion algorithm of [13], a cruise control system based on the 
description in [20], an elevator control system adapted from [6], a 
production cell specification based on the description in [14], a 
railroad crossing system based on the description in [7], and a 
stoplight specification adapted from the stoplight control system 
described in [6].  The testbed also includes the specification of an 
electronic scoring system for Olympic boxing based on a 
description of the system taken from the official 1996 Olympic 
web site [17].  Finally, the testbed includes a long distance 
telephony specification taken from [2]. 

These specifications represent a wide variety of real-time systems.  
There are small systems such as the railroad crossing and large 
systems such as the stoplight control system.  There are simple 
systems such as the cruise control and complex systems such as 
the phone system.  There are open systems such as the scoring 
system and closed systems such as the bakery algorithm.  There 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ISSTA’00, Portland, Oregon. 
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00. 

86



 2 

are deterministic systems such as the production cell and 
nondeterministic systems such as the elevator control system.  
Finally, there are systems where assumptions are not needed to 
complete the proofs such as the stoplight control system and 
systems where assumptions are needed such as the phone system.  
Given that the testbed systems represent such a wide variety of 
real-time systems, it is expected that the classifications developed 
for these systems are applicable to most systems in general.  In 
addition to their usefulness during the development of the 
systematic analysis methodology, as a side result, these systems 
demonstrate the flexibility and expressiveness of ASTRAL.  The 
complete specifications of the testbed systems can be found in [9]. 

This paper presents the classification schemes that were 
developed based on the set of testbed systems.  Although these 
classification schemes and proof techniques were developed based 
on ASTRAL specifications, it is felt that the results for ASTRAL 
are applicable to many other real-time specification languages by 
just taking into account the differences in terminology and syntax.  
Classification schemes were developed for processes, properties, 
and transitions.  Each scheme is presented as well as how each 
classification is of assistance during the proof process.  Due to 
space limitations, the proof techniques are discussed at a high 
level.  For complete technical details on the systematic analysis 
methodology, see [11].  The next section gives a brief overview of 
the ASTRAL language.  Sections 3, 4, and 5 discuss the 
classification schemes for processes, properties, and transitions, 
respectively, and how each assists analysis.  Section 6 presents 
some related work in classification and systematic guidance.  
Finally, some conclusions and future directions for this research 
are discussed in section 7. 

2. ASTRAL OVERVIEW 
In ASTRAL, a real-time system is described as a collection of 
state machine specifications, where each specification represents a 
process type of which there may be multiple, statically generated, 
instances.  Each process instance in the system executes 
concurrently and asynchronously with all the other process 
instances.  Additionally, a global specification contains 
declarations for types and constants that are shared among more 
than one process type, as well as assumptions about the global 
environment and critical requirements for the whole system. 

An ASTRAL process specification consists of a sequence of 
levels.  Each level is an abstract data type view of the process 
being specified.  The first (“top level”) view is a very abstract 
model of what constitutes the process (types, constants, variables), 
what the process does (state transitions), and the critical 
requirements the process must meet (invariants and schedules).  
Lower levels are increasingly more detailed with the lowest level 
corresponding closely to high-level code.  Figure 1 shows one of 
the process types of the Olympic boxing scoring system.  The 
Judge process represents the scoring panel that judges use to keep 
score of the boxing match. 

The process being specified is thought of as being in various 
states, with one state differentiated from another by the values of 
its state variables, which can be changed only by means of state 
transitions.  Every process can export both state variables and 
transitions; as a consequence, the former are readable by other 
processes while the latter are executable from the external 

environment.  Processes communicate by broadcasting the values 
of exported variables and the start and end times of exported 
transitions.  In the Judge process, the Score_Card variable and the 
Score transition are exported.  Judge imports the global constant 
Window, the process ID Time_Keeper, and the global types 
Pos_Real, Non_Negative, and Boxer from the global 
specification.  In addition, the In_Round variable is imported 
from the Time_Keeper instance of the Timer process type. 

Transitions are described in terms of entry and exit assertions by 
using an extension of first-order predicate calculus.  Transition 
entry assertions describe the constraints that state variables must 
satisfy in order for the transition to fire, while exit assertions 
describe the constraints that are fulfilled by state variables after 
the transition has fired.  An explicit non-null duration is 
associated with each transition. 

Each transition is either a local transition or an exported 
transition.  A local transition is enabled when its entry assertion is 
satisfied.  An exported transition, however, is only enabled when 
both its entry assertion is satisfied and when it has been called 
(i.e. invoked) from the external environment.  Transitions are 
executed as soon as they are enabled assuming no other transition 
for that process instance is executing.  If two or more transitions 
are enabled simultaneously, a nondeterministic choice will occur 
and only one of them will execute.  In the Judge process, the 
Score transition is enabled when it has been called from the 
external environment but not yet serviced, when the match is in a 
round, and when the last time Score fired was more than Window 
time units in the past. 

In addition to specifying system state (through process variables 
and constants) and system evolution (through transitions), an 
ASTRAL specification also defines system critical requirements 
and assumptions about the behavior of the environment that 
interacts with the system.  The behavior of the environment is 
expressed by means of environment clauses, which describe 
assumptions about the pattern of invocation of exported 
transitions.  Critical requirements are expressed by means of 
invariants and schedules.  Invariants represent requirements that 
must hold in every state reachable from the initial state, no matter 
what the behavior of the external environment is, while schedules 
represent additional properties that must be satisfied provided that 
the external environment behaves as assumed. 

Invariants and schedules are proved over all possible executions 
of a system.  A system execution is a set of process executions 
that contains one process execution for each process instance in 
the system.  A process execution for a given process instance is a 
history of events on that instance.  The value of an expression E at 
a time t1 in the history can be obtained using the past operator, 
past(E, t1), such that t1 ≤ now, where now is a special global 
variable used to denote the current time in the system.  There are 
four types of events that may occur in an ASTRAL history.  A call 
event, Call(tr1, t1), occurs for an exported transition tr1 at a time 
t1 iff tr1 was called from the external environment at t1.  A start 
event, Start(tr1, t1), occurs for a transition tr1 at a time t1 iff tr1 
fires at t1.  Similarly, an end event, End(tr1, t1), occurs iff tr1 
ends at t1.  Finally, a change event, Change(v1, t1), occurs for a 
variable v1 at a time t1 iff v1 changes value at t1.  Note that 
change events can only occur when an end event occurs for some 
transition. 
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Using these operators, a variety of complex properties can be 
expressed.  For example, the schedule of the Judge process states 
that whenever Score is called from the external environment (i.e. a 
human judge presses the score button for a particular boxer on the 
scoring panel), Score will start immediately.  This property can 
only be guaranteed when the environment holds, which states that 
consecutive calls to Score will be separated by 2 * Window time 
units and that calls to Score will only occur when the match is in a 
round.  An introduction and complete overview of the ASTRAL 
language can be found in [2]. 

ASTRAL is supported by the ASTRAL Software Development 
Environment (SDE) [12], which allows the user to edit and 
manage complex specifications as well as providing support for 
their analysis.  In particular, proof obligations can be 
automatically produced from specifications, and proofs are 
supported by both model checking and deductive facilities.  The 
model checker can check the critical requirements of a particular 
instance of a specification over a finite time interval.  ASTRAL 
has been encoded into the language of the PVS theorem prover 
[3] to support deductive reasoning. 

3. PROCESS CLASSIFICATION 
The goal of process classification is to identify detectable 
differences in process behavior that lead to significantly different 
styles of proofs.  By examining the proofs of the testbed systems, 
three such process classifications were identified that can be 
statically recognized.  These classifications are multi-threaded 
processes, iterative single-threaded processes and simple single-
threaded processes.  Each of these classifications is discussed in 
the following subsections. 

3.1 Multi-Threaded Processes 
A multi-threaded process is a process in which multiple threads of 
execution are occurring at any given time in the process.  For 
example, consider the central control process of the phone system.  
In this case, the “threads” are the servicing of each phone in the 
central control’s area.  Each thread consists of a chain of actions 
that occurs during the evolution of a call for a particular phone.  
The central control can only perform one stage of a single phone’s 
thread at any given time.  The phone threads of all the phones are 
interleaved with each other in the central control.  Figure 2 shows 
the threads of two phones and how they might be interleaved on 
the central control.  The labels GDT, PD, PC, etc. are 
abbreviations for the central control transitions Give_Dial_Tone, 
Process_Digit, Process_Call, Enable_Ringback, 
Disable_Ringback_Pulse, Start_Talk, and Terminate_Call. 

The key fact about multi-threaded processes is that there are 
multiple independent threads interleaved on the process, thus at 
any given time, any combination of thread stages may be enabled 
in the set of threads.  This means that there is essentially no way 
to guarantee a real-time response property of a single thread 
unless some set of restrictions is placed on the behavior of the 
complete set of threads.  Namely, it is necessary to guarantee that 
the thread will not be “starved” by the other threads.  This is 
usually achieved by choosing an appropriate scheduling policy 
(e.g. fixed priority, FIFO, round robin, etc.) and by placing 
various limitations on the number of transitions enabled or threads 
that require service at any given time.  In multi-threaded operating 
systems, the scheduling policy specifies how to select the next 
thread to execute on the processor when multiple threads are 
waiting for service.  In ASTRAL, a scheduling policy can be 
implicitly specified by the transition selection clause, which states 
how to select the next transition to execute on a process when 
multiple transitions are enabled. 

Figure 1.  The Judge process 

PROCESS SPECIFICATION Judge       ENVIRONMENT 
IMPORT              ( EXISTS t: Time 

Pos_Real, Boxer, Time_Keeper.In_Round,      ( t ≤ Now 
Non_Negative, Window, Time_Keeper       & Call2(Score, t)) 

EXPORT              → Call(Score) - Call2(Score) ≥ 2 * Window) 
Score, Score_Card          & ( Call(Score, now) 

CONSTANT              → Time_Keeper.In_Round) 
Score_Dur: Pos_Real        TRANSITION Score(B: Boxer) 

VARIABLE             ENTRY [TIME: Score_Dur] 
Score_Card(Boxer): Non_Negative        Time_Keeper.In_Round 

AXIOM               & FORALL t: Time 
Score_Dur < Window            ( t < Now 

INITIAL                 & past(Start(Score, t) , t) 
FORALL B: Boxer            →  Now - t > Window) 

(Score_Card(B) = 0)         EXIT 
SCHEDULE               Score_Card(B) BECOMES  

Call(Score, now)              Score_Card′(B) + 1 
→ Start(Score, now)        END Judge 
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Figure 2.  Interleaved phone threads on the central control 

 

After the scheduling policy has been determined and the appropriate 
limits have been found, an estimate of the maximum response time 
can be derived based on the scheduling policy of the process.  For 
example, in fixed priority scheduling, the maximum response time 
can be derived as shown in figure 3.  In this case, there may be some 
arbitrary transition firing when all the requests are made.  Thus, 
before the fixed priority scheduling policy takes effect, there may be 
a delay of up to the duration of the slowest transition.  In the figure, 
there are n - 1 priority levels that are higher than the priority level of 
the thread associated with the requirement of the property.  Thus, 
before the thread of interest can fire, a bounded number of threads at 
each of the n - 1 higher priority levels can potentially fire. 

3.2 Iterative Single-Threaded Processes 
An iterative single-threaded process is a process that repeatedly 
executes a sequence of actions in a countable fashion.  That is, a 
similar sequence of actions is performed during each iteration.  Note 
that almost all ASTRAL processes are cyclic in some way.  In an 
iterative process, however, there is some record of how many 
iterations have been performed that affects the behavior of the 
process.  The count may represent floors in a building, loop counts 
in a program, etc. 

For example, consider the Elevator process of the elevator control 
system.  The Elevator process iterates over the position of the 
elevator car in the building.  At each floor, the elevator performs a 
specific sequence of actions depending on the position, the direction 
of movement, and the requests outstanding in the building.  For 
example, if the elevator just arrived at a floor i moving up and there 
are requests on floors i and i+1, the sequence of actions would be 
door_open, door_stop, door_close, door_stop, move_up, and arrive. 

The first thing to notice in iterative single-threaded processes is that 
in order for a response requirement to be guaranteed, the maximum 
time that can be spent in any iteration must be bounded.  The other 
thing is that the number of full iterations between when the context 
holds and when the requirement is to hold must also be bounded.  
Thus, the proofs of response requirements can be performed by 
determining these bounds, deriving the maximum response time 
accordingly, and then checking the derived time against the required 
time.  For a property in which the requirement must hold within a 
given period of time after the context holds, the maximum response 
time can be derived as shown in figure 4.  First, it is necessary to 
derive how long it takes to reach a full iteration from when the 
context holds.  Then, the maximum time of each full iteration is 
calculated and multiplied by the maximum number of full iterations.  
Finally, how long it takes to reach a time at which the requirement 
holds from the last full iteration is derived. 

3.3 Simple Single-Threaded Processes 
The simple single-threaded processes are the processes that are 
neither multi-threaded processes nor iterative single-threaded 
processes.  These processes do not necessarily exhibit “simple” 
behavior.  Rather, a cycle of a simple single-threaded process’s 
execution represents the interval over which properties in the 
process must be proved.  This is in contrast to an iterative single-
threaded process in which a property may need to be proved over 
multiple cycles of the process’s execution.  An example of a simple 
single-threaded process is the press component of the production 
cell, which cyclically moves from a loading position to a forging 
position to an unloading position as shown in figure 5. 
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Figure 3.  Deriving the maximum response time for fixed priority scheduling 
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3.4 Testbed Process Classifications 
Table 1 shows the process classification of each process in the 
testbed systems, where MT is multi-threaded, IST is iterative single-
threaded, and SST is simple single-threaded.  The numbers were 
obtained using the process classification component of the ASTRAL 
SDE.  The process classifier automatically classifies a process by 
examining its transitions and attempting to identify those with multi-
threaded or iterative behavior, which indicates that the process as a 
whole is multi-threaded or iterative.  A large percentage of the total 
number of processes were of the more straightforward simple single-
threaded variety meaning that the complexities associated with the 
other two types can be avoided in most cases. 

4. PROPERTY CLASSIFICATION 
To describe the property classifications, it is first necessary to 
introduce a few definitions.  Every first-order logic formula can be 
written in the form “context → requirement”, where the context is a 
conjunction of unnegated conditions and the requirement is a 
disjunction of unnegated conditions.  The context describes the 
conditions under which the requirement must hold.  That is, the 
requirement is not required to hold under any conditions in which 
the context does not hold.  A property may have an empty context, 
“TRUE → requirement”, or an empty requirement, “context → 
FALSE”. 

The context times are the times that are referenced in some timed 
operator expression (i.e. past, change, start, end, or call in 
ASTRAL) in the conditions of the context.  In languages other 
than ASTRAL, this definition would reflect the differences in 
timed operators.  These times may be concrete times such as now 
- 5 (in ASTRAL), or symbolic times such as a quantified time 
variable t that has been restricted in some way.  The requirement 

times are the times that are referenced in a similar expression in 
the conditions of the requirement.  For example, consider the 
following property of the Speed_Control process of the cruise 
control system. 

  control_dur ≤ input_dur 
& now ≥ input_dur + input_dur 
& past(maintaining_speed, now - input_dur - input_dur) 
& call(set_brake_pedal, now - input_dur - input_dur) 

→  EXISTS t: Time 
   ( now - input_dur - input_dur ≤ t 
   & t ≤ now 
   & ~past(maintaining_speed, t)) 

In this property, the only context time is now - input_dur - 
input_dur and the only requirement time is t.  Properties can be 
classified based on the forms and the times of their context and 
requirement.  The following sections describe these 
classifications, which are untimed, timed forward safety, timed 
backward safety, timed forward liveness, and timed backward 
liveness.  Every ASTRAL property falls into one of these five 
classifications. 

4.1 Untimed Properties 
An untimed property is a property in which the only context and 
requirement time is the current time (i.e. now in ASTRAL).  The 
most common form of an untimed property is one that consists 
solely of boolean combinations of local state variables.  For 
example, the property shown below is an untimed property of the 
Controller process of the stoplight control system. 

FORALL d: direction 
 ( circle(d) = green 
→  arrow(opp(d)) = red) 

 

���

�����
��
����
��

�����
��
������������
��
����
��

�����������
��
���
�
������ �������
������


���#�������


#�����
��
���


���������
#�������
�



���
��#���


#�����
��
���

 
Figure 4.  Deriving the maximum response time 

 

 

 
Figure 5.  A cycle of the production cell press 
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In this property, whenever the circle of a direction is green, the 
arrow of the opposing direction must be red. 

This property classification is significant because it allows the use 
of frame axioms [1], which assert that elements of the state that 
are not explicitly changed to a new value in the postcondition of a 
transition remain unchanged from the precondition.  Normally in 
timed transition systems, the current time is an element of the 
state.  Thus, since time is continuously changing, it is not possible 
to use a frame axiom because even though a property may hold 
when a transition started and when it ended, the property may 
have been violated in between due to a change in time.  Untimed 
properties do not depend on the current time, however, thus they 
cannot be violated while a transition is executing, but only when a 
transition changes the state.  This means that it is sometimes 
possible to prove these properties simply by examining the entry 
and exit assertions of each transition and assuring that (1) any 
time the context is set to true in an exit assertion, the requirement 
is set to true in the exit assertion or is true in the entry assertion 
and is unchanged in the exit assertion and (2) any time the 
requirement is set to false in an exit assertion, the context is set to 
false in the exit assertion or is false in the entry assertion and is 
unchanged in the exit assertion.  For example, consider the 
maintain_speed transition of the Speed_Control process of the 
cruise control system. 

 

TRANSITION maintain_speed 
 ENTRY [TIME: input_dur] 
   cruise_on 
  & ~maintaining_speed  
 EXIT 
   cruise_throttle = throttle′ 
  & desired_speed = the_speedometer.speed 
  & maintaining_speed 

This transition preserves the property “maintaining_speed → 
cruise_on” because when the context is set to true in the exit 
assertion (i.e. maintaining_speed is asserted), the requirement is 
true in the entry assertion (i.e. cruise_on is asserted) and is 
unchanged in the exit assertion.  This procedure has been fully 
automated in the ASTRAL theorem prover [10]. 

4.2 Timed Properties 
A timed property is either a safety property or a liveness property 
and is either forward or backward.  In a safety property, the 
requirement must hold at all times in an interval of time.  In a 
liveness property, the requirement must hold at least once in an 
interval of time.  If a property is forward, then there is some 
context time that is less than or equal to every requirement time.  
If a property is backward, then there is some requirement time that 
is less than or equal to every context time. 

 
Table 1.  Process classifications of testbed systems 

System Process Type MT IST SST 
Bakery Algorithm Proc  X  
Cruise Control Accelerometer   X 
 Speed_Control   X 
 Speedometer   X 
 Tire_Sensor   X 
Elevator Elevator  X  
 Elevator_Button_Panel   X 
 Floor_Button_Panel   X 
Olympic Boxing Judge   X 
 Tabulate  X  
 Timer  X  
Phone Central_Control X   
 Phone   X 
Production Cell P_Crane   X 
 P_Deposit   X 
 P_Deposit_Sensor   X 
 P_Feed   X 
 P_Feed_Sensor   X 
 P_Press   X 
 P_Robot   X 
 P_Table   X 
Railroad Crossing Gate   X 
 Sensor   X 
Stoplight Controller X   
 Sensor   X 

Total 23 2 4 19 
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For example, the property shown below is a forward liveness 
property of the P_Robot process of the production cell. 

FORALL t: Time 
 ( start(Arm1_Drop, now) 
 & end(Arm1_Drop, t) 
→  EXISTS t1: Time 
   ( t < t1 
   & t1 < now 
   & end(Arm2_Pickup, t1))) 

This property states that between any two consecutive drops of an 
object by arm one, arm two must pickup an object.  This property 
is a forward property because there is context time, t, that is less 
than or equal to every requirement time.  It is a liveness property 
because the requirement is only required to hold once in the 
interval (t, now), namely at t1. 

As another example, the property shown below is a backward 
safety property of the Sensor process of the railroad crossing. 

FORALL t: Time 
 ( change(train_in_R, now) 
 & ~train_in_R 
 & now - ((dist_R_to_I + dist_I_to_out) 
     / max_speed - response_time) ≤ t 
 & t < now 
→  past(train_in_R, t)) 

This property states that whenever a sensor stops reporting a train 
in the region, the sensor has been reporting a train for at least the 
past (dist_R_to_I + dist_I_to_out) / max_speed - response_time 
time.  This property is a backward property because there is a 
requirement time, t, that is less than or equal to every context 
time.  It is a safety property because the requirement is required to 
hold at all times in the interval [now - ((dist_R_to_I + 
dist_I_to_out) / max_speed - response_time), now). 

These classifications correspond closely to the temporal logic 
operators presented in [16].  Forward safety and forward liveness 
correspond to the henceforth and eventually operators, while 
backward safety and backward liveness correspond to the has-
always-been and once operators. 

The distinction between proving forward properties and proving 
backward properties occurs due to nondeterminism.  When a 
forward property is proved, all possible nondeterministic choices 
that can be made in the system, such as events occurring or not  

occurring in the external environment and choices between which 
transition will fire, must be considered.  When a backward 
property is proved, however, the path along which the system has 
evolved has already been determined; thus, nondeterminism is 
usually less of a factor. 

The distinction between proving liveness properties and proving 
safety properties is that for liveness properties, the prover must 
show all of the exact sequences of events that occur from the time 
the context holds until the time the requirement holds in order to 
assure that the required event will occur in every given scenario.  
When proving a safety property, however, it can be assumed that 
some “bad event” has occurred and then the conditions that hold 
in the proof interval can be used to produce a contradiction.  In 
general, this is usually easier than showing all possible evolutions 
of the system since much of the detail of the executions can be 
abstracted away. 

4.3 Testbed Property Classifications 
Table 2 shows the number of each type of property in each of the 
testbed systems, where U is untimed, F/B is forward/backward, 
and S/L is safety/liveness.  The numbers were obtained by 
completely splitting all of the formulas of each specification into 
conjunctive normal form and then invoking the property 
classification component of the ASTRAL SDE on each split.  The 
property classifier automatically classifies a formula by 
transforming it to a canonical form and then analyzing its 
quantifiers and context/requirement times appropriately.  The 
properties are broken down into the properties that occur in the 
requirements sections (i.e. invariant, schedule, and constraint 
clauses) and those that occur in the assumptions sections (i.e. 
environment and imported variable clauses).  The results indicate 
that a large portion of the properties are untimed properties 
meaning that simpler techniques can be applied to these properties 
and more concentration can be given to the more difficult 
properties, which are the timed properties. 

5. TRANSITION CLASSIFICATION 
While process and property classifications are high-level 
classification schemes that identify distinct proof styles, a 
transition classification is a low level scheme that facilitates steps 
within each proof.  Namely, a transition classification can be used 
to determine how the next or previous transition is found in a 
particular execution and how much time elapses or has elapsed 
since that transition fired. 

 
Table 2.  Property classifications of testbed systems 

System Requirements Assumptions Total 
   U FS FL BS BL  U FS FL BS BL  
Bakery Algorithm  11  1  0  0  1  3  1  0  0  1   18 
Cruise Control  5  0  2  0  0  0  0  0  0  0   7 
Elevator  8  0  8  0  3  2  9  0  0  3   33 
Olympic Boxing  8  2  0  0  1  1  5  0  0  0   17 
Phone  26  14  0  0  0  0  8  0  0  7   55 
Production Cell  32  3  6  0  8  0  1  4  0  4   58 
Railroad Crossing  0  7  0  1  0  0  2  0  1  0   11 
Stoplight  17  4  0  0  2  0  0  0  0  0   23 

Total  107  31  16  1  15  6  26  4  1  15   222 
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In ASTRAL, the enablement of a transition depends on four 
factors:  the local state, the imported state, the external 
environment, and the current time.  The local state includes the 
values of local variables and the start and end times of local 
transitions.  The imported state includes the values of variables 
imported from other processes and the start and end times of 
imported transitions.  All transitions depend on one or more of 
these factors.  For example, consider the two transitions of the 
bakery algorithm specification shown below. 

TRANSITION set_choose 
ENTRY [TIME: exec_time] 

now ≥ delay 
& ~choosing 
& number = 0 

EXIT 
choosing 

 
TRANSITION for_loop 

ENTRY [TIME: exec_time] 
next_i ≤ n_procs 

& ~choosing 
& number ≠ 0 
& ~procs[next_i].choosing 
& ( procs[next_i].number = 0 

| number < procs[next_i].number 
| number = procs[next_i].number 
& FORALL j: procs_int 

( procs[j] = self 
→ j ≤ next_i))  

EXIT 
next_i = next_i′ + 1 

The set_choose transition depends on the local state (choosing 
and number) and the current time (Now).  The for_loop transition 
also depends on the local state (next_i, choosing, and number), 
but in place of the current time, it depends on the other processes 
in the system (procs[next_i].number) instead. 

A transition is classified based on which factors its enablement is 
dependent.  There are seven classifications corresponding to the 
possible combinations of the imported state (O), external 
environment (E), and current time (T) factors plus a classification 
for transitions that only depend on the local state (L).  The 
set_choose transition is of type T and the for_loop transition is of 
type O.  Table 3 shows the number of transitions of each 
classification that appear in the testbed systems.  This information 
was obtained automatically using the transition classification 

component of the ASTRAL SDE, which examines each transition 
for the different factors. 

These classifications are significant because they can be used to 
help determine the delay between any two consecutive transitions 
on the same process instance, which in turn can be used to 
determine the execution time of arbitrary transition sequences.  To 
determine the delay between two consecutive transitions tr1 and 
tr2, tr2 is first classified.  If tr2 depends only on local variables, 
tr2 must fire immediately after tr1.  If this were not the case, then 
a contradiction can be achieved as follows.  Let t1 be the time that 
tr1 fired and t2 be the time that tr2 fired.  In this case, t2 - t1 > 
Duration(tr1) and tr2 is not enabled at t1 + Duration(tr1) or else 
by the semantics of ASTRAL, tr2 would have fired.  Since tr2 
does eventually fire at t2, however, it is enabled at t2.  Since tr2 
depends only on the local state, there must have been a change to 
the local state between t1 + Duration(tr1) and t2.  This means that 
there was either a start, an end, and/or a change to a local variable.  
Since tr1 and tr2 were assumed to be consecutive, however, no 
other transition could have started or ended in between, and as a 
consequence, no changes to local variables could have occurred.  
This is a contradiction, so tr2 must fire immediately after tr1. 

If tr2 depends on more than just the local state, the delay between 
tr1 and tr2 is more difficult to determine.  If tr2 additionally 
depends on the current time, the history of the system must be 
examined to determine if and when the events constrained by the 
current time have occurred.  In many cases, the events will be 
related to the execution of tr1.  For example, a common instance 
of this type is “now - End(tr1) ≥ delay1”.  Another common 
instance is “now - Change(v) ≥ delay1” where v is a variable set 
by tr1.  In these cases, the delay between tr1 and tr2 is equal to 
delay1.  If the events are not related to tr1, however, more in-
depth analysis of the history of the system must be performed. 

If tr2 depends on the environment, the start of tr2 is delayed until 
a call to tr2 is generated by the external environment.  In this case, 
it is necessary to examine the environment clause for restrictions 
on calls to tr2.  If there are no such restrictions, then the delay 
between tr1 and tr2 can be arbitrarily large.  If there are 
restrictions, however, then it is necessary to examine the history 
of the system to determine when calls can or will occur to 
compute the delay between tr1 and tr2.  Similarly, if tr2 depends 
on other processes, the start of tr2 is delayed until imported 
variables have the appropriate values and/or imported transitions 
have occurred at the appropriate times.  In this case, the imported 
variable clause must be examined in a similar fashion to that of 
the environment clause.  If tr2 depends on combinations of the 

 
Table 3.  Transition classifications of testbed systems 

System  L  E  O  T EO ET OT EOT Total 
Bakery Algorithm  4  0  1  1  0  0  0   0   6 
Cruise Control  2  9  2  1  0  0  0   0   14 
Elevator  0  3  4  3  0  0  2   0   12 
Olympic Boxing  0  0  2  2  0  0  1   1   6 
Phone  0  2  16  0  7  0  5   0   30 
Production Cell  14  0  11  20  0  0  10   1   56 
Railroad Crossing  0  1  2  3  0  0  0   0   6 
Stoplight  0  2  4  0  0  0  18   0   24 

Total  20  17  42  30  7  0  36   2   154 
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current time, the environment, and other processes, all of the 
appropriate clauses must be examined. 

6. RELATED WORK 
Dwyer et al. [5] developed a set of property classifications based 
on a large number of linear temporal logic specifications collected 
from the literature.  The classifications include absence, existence, 
universality, precedence, and response.  It was found that almost 
all of the property specifications collected fall into one of these 
classifications.  The goal of these classifications is to facilitate the 
creation and reuse of property specifications by providing a set of 
templates that can be instantiated appropriately during 
specification.  This is in contrast to the property classifications 
presented in this paper, which were designed to be automatically 
recognizable after a specification has already been written to 
differentiate between distinct proof patterns.  The two approaches, 
however, are not mutually exclusive.  In fact, they can be used in 
a complementary fashion.  For writing specifications, the template 
classification schemes can be used, which were developed with 
creation and reuse in mind, but were not developed to be statically 
recognizable or to distinguish between distinct proof styles.  For 
analyzing specifications, the classification schemes of this paper 
can be used, which are statically recognizable and distinguish 
between distinct proof styles, but may not be intuitive or specific 
enough to be used as design templates. 

In a similar fashion, Shaw and Garlan [19] developed a taxonomy 
where systems are classified based on different types of system 
components and the read/write interactions between them.  
Classifications in the taxonomy include pipes and filters, object-
orientation, implicit invocation, layered systems, repositories, 
interpreters, and process control.  The purpose of these 
classifications is to facilitate the design and reuse of software 
architectures by identifying the most common patterns that occur 
in practice.  This classification scheme is supported by an 
automatic classification tool developed by Dean and Cordy [4].  A 
system is first specified as a graph, where nodes represent 
different components in the system and edges represent different 
types of connections between components.  Node types include 
tasks, tables, random access repositories, and files.  Edge types 
include streams, memory accesses, messages, procedures, 
invocations, and productions.  Once the graph for a system has 
been specified, a pattern-matching algorithm determines the type 
of the system based on the Shaw/Garlan taxonomy.  Although 
these classifications can be automatically identified, they do not 
differentiate enough between distinct proof styles.  In other words, 
systems that have identical classifications may need significantly 
different tools and techniques to discharge their proofs. 

Henzinger et al. [8] provide guidance as to how proofs can be 
constructed.  In this work, proof methodologies based on temporal 
logic reasoning are discussed for timed transition systems.  Two 
different specification styles are identified and different proof 
techniques are presented for each.  In the first specification style, 
real-time properties are expressed using time-bounded temporal 
operators.  Proof rules are provided for proving bounded-
invariance and bounded-response properties.  In the second 
specification style, real-time properties are expressed using an 
explicit clock variable.  Since the clock variable can be thought of 
as just an ordinary variable, untimed proof techniques are used to 
discharge proofs in these systems.  These classifications are at a 

much higher level than the classifications of this paper and cannot 
be used to direct the proofs at the level needed by a human prover. 

7. CONCLUSIONS AND FUTURE WORK 
This paper has presented process, property, and transition 
classification schemes for real-time systems that can be used to 
assist in the analysis of these systems.  By basing the classification 
schemes on actual specifications and their associated proofs, the 
likelihood of getting guidelines and tools that will help the user in 
analyzing and proving other specifications is increased.  A large 
number of the proofs of the testbed systems were proved by hand 
with the assistance of the classification schemes and proof 
techniques, which became available incrementally as more and 
more proofs were performed.  Over half of the requirements were 
completely proved in PVS.  A systematic methodology for the 
analysis of real-time systems based on these classification 
schemes can be found in [11]. 

In general, more example systems need to be specified and proved 
to determine whether the classification schemes presented in this 
paper are sufficient to classify all real-world systems or whether 
other useful classifications exist.  Although the classification 
schemes developed were based on ASTRAL specifications, most 
of the descriptions did not rely on exclusively ASTRAL concepts 
and terminology, but instead were discussed in a high level 
fashion.  Thus, the authors feel that these schemes are also 
applicable to other real-time concurrent specification languages.  
For languages similar to ASTRAL, such as the Timed Automaton 
Model [15] and the Timed Transition Model [18], these 
classifications are readily applicable.  For other languages, the 
classification schemes can be applied by taking differences in 
language constructs into account.  Process classification 
corresponds to the classification of the active entities of the 
language, whether they be automata, objects, etc.  Property 
classification is similar across most real-time languages with 
slight differences for the logic used and the operators available.  
Finally, transition classification corresponds to the classification 
of the state changes of a language, whether they be transitions, 
actions, functions, etc.  Further investigation is necessary to 
validate that the classifications are applicable in general. 

The classification schemes discussed in this paper have been 
incorporated into the ASTRAL SDE.  Queries to display process 
and transition classification information are available in the their 
respective browsers, and the property classification information is 
automatically displayed whenever the formula splitter tool is 
invoked on a formula.  In addition, fully automated theorem 
prover strategies are available for properties classified as untimed 
properties [10].  Finally, the transition classification information 
is used by the transition sequence generator [10] to estimate the 
running times of each transition sequence that is generated. 
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